微信扫码

  • 15216886416
   宇劲生物
Cloud Zoom small image
货号:DICU-250    品牌:BioAssay Systems

生化分析试剂盒

名称:QuantiChrom™ Copper Assay Kit 铜离子测试盒
可在线通过咨询了解详情
 
通过以下按钮进入下一步
  • 详情
  • 评价
品牌货号产品名称规格
BioAssay SystemsDICU-250

QuantiChrom™ Copper Assay Kit

铜离子测试盒

250T

说明书:

DICU.pdf


Application

  • For quantitative determination of copper(II) ion and evaluation of drug effects on Cu metabolism.

Key Features

  • Sensitive and accurate. Linear detection range 7 μg/dL (1.0 μM) to 300 μg/dL (47 μM) copper in 96-well plate assay.
  • Simple and high-throughput. The simple procedure can be readily automated as a high-throughput assay in 96-well plates for thousands of samples per day.
  • Improved reagent stability and versatility. The optimized formulation has greatly enhanced reagent and signal stability. Cuvet or 96-well plate assay.

Method

  •  OD359nm

Samples

  •  Biological, environment, food and beverage

Species

  •  All

Size

  •  250 tests

Detection Limit

  •  7 μg/dL (1.0 μM)

Shelf Life

  •  12 months

More Details

  •  Copper is an essential trace element. Copper-containing enzymes play important roles in iron and catecholamine metabolism, free radical scavenging, and in the synthesis of hemoglobin, elastin and collagen. Copper is mainly present in caeruloplasmin in the liver. Low levels of copper have been associated with mental retardation, depigmentation, anaemia, hypotonia and scorbutic changes in bone. Levels of copper are key diagnostic indicator of diseases such as Wilson’s disease, microcytic hypochromic anaemia and bone disease due to reduced collagen synthesis. Simple, direct and automation-ready procedures for measuring copper concentrations find wide applications in research, drug discovery and environmental monitoring. BioAssay Systems copper assay kit is designed to measure copper with no or minimal sample treatment. The improved method utilizes a chromogen that forms a colored complex specifically with copper ions. The intensity of the color, measured at 359nm, is directly proportional to copper concentration in the sample. The optimized formulation substantially reduces interference by substances in the raw samples.


·相关文献


Parmar, A., Pascali, G., Lerra, L., Yee, E., Ahmed-Cox, A., Kimpton, K. & Liu, G. J. (2018). In vivo [64Cu] CuCl2 PET imaging reveals activity of Dextran-Catechin on tumor copper homeostasis. Theranostics, 8(20), 5645-5659. Assay: Copper in neuroblastoma cell.

Dikicioglu, D., & Oliver, S. G. (2017). Estimating global enzyme abundance levels from cofactor requirements: a model-based analysis of the iron metabolism in yeast. bioRxiv, 229104. Assay: Copper in S. cerevisiae cells.

Yee, E. M., Brandl, M. B., Pasquier, E., Cirillo, G., Kimpton, K., Kavallaris, M. & Vittorio, O. (2017). Dextran-Catechin inhibits angiogenesis by disrupting copper homeostasis in endothelial cells. Scientific reports, 7(1), 7638. Assay: Copper in human cells.

Vittorio, O., Brandl, M., Cirillo, G., Kimpton, K., Hinde, E., Gaus, K. & Haber, M. (2016). Dextran-Catechin: An anticancer chemically-modified natural compound targeting copper that attenuates neuroblastoma growth. Oncotarget 7(30): 47479-47493. Assay: Copper in human cells.

EL-Deeb, W. M., & El-Bahr, S. M. (2014). Selected Biochemical Indicators of Equine Rhabdomyolysis in Arabian Horses: Acute Phase Proteins and Trace Elements. Journal of Equine Veterinary Science 34(4): 484-488. Assay: Copper in horse serum.

Bartnikas TB (2012) Known and potential roles of transferrin in iron biology. Biometals 25(4):677-86. Assay: Copper in human protein.

Philips N et al (2012) Beneficial regulation of fibrillar collagens, heat shock protein-47, elastin fiber components, transforming growth factor-beta1, vascular endothelial growth factor and oxidative stress effects by copper in dermal fibroblasts. Connect Tissue Res. 53(5):373-8. Assay: Copper in human cell.

Piret JP et al (2012) Differential toxicity of copper (II) oxide nanoparticles of similar hydrodynamic diameter on human differentiated intestinal Caco-2 cell monolayers is correlated in part to copper release and shape. Nanotoxicology 6:789-803. Assay: Copper in human cell.

Piret, JP et al (2012). Copper (II) oxide nanoparticles penetrate into HepG2 cells, exert cytotoxicity via oxidative stress and induce pro-inflammatory response. Nanoscale 4(22): 7168-7184. Assay: Copper in human cell culture medium.

Lull ME, et al (2008). Plasma biomarkers in pediatric patients undergoing cardiopulmonary bypass. Pediatr Res. 63(6):638-44. Assay: Copper in human plasma.